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Abstract
In this work, we focus on low-dimensional colloidal model systems, via simulation studies and also
some complementary experiments, in order to elucidate the interplay between phase behavior,
geometric structures and transport properties. In particular, we try to investigate the (nonlinear!)
response of these very soft colloidal systems to various perturbations: uniform and uniaxial pressure,
laser fields, shear due to moving boundaries and randomly quenched disorder.

We study ordering phenomena on surfaces or in monolayers by Monte Carlo computer
simulations of binary hard-disk mixtures, the influence of a substrate being modeled by an external
potential. Weak external fields allow a controlled tuning of the miscibility of the mixture. We discuss
the laser induced de-mixing for the three different possible couplings to the external potential.

The structural behavior of hard spheres interacting with repulsive screened Coulomb or dipolar
interaction in 2D and 3D narrow constrictions is investigated using Brownian dynamics simulations.
Due to misfits between multiples of the lattice parameter and the channel widths, a variety of
ordered and disordered lattice structures have been observed. The resulting local lattice structures
and defect probabilities are studied for various cross sections. The influence of a self-organized
order within the system is reflected in the velocity of the particles and their diffusive behavior.

Additionally, in an experimental system of dipolar colloidal particles confined by gravity on a
solid substrate we investigate the effect of pinning on the dynamics of a two-dimensional colloidal
liquid.

This work contains sections reviewing previous work by the authors as well as new,
unpublished results. Among the latter are detailed studies of the phase boundaries of the de-mixing
regime in binary systems in external light fields, configurations for shear induced effects at
structured walls, studies on the effect of confinement on the structures and defect densities in
three-dimensional systems, the effect of confinement and barriers on two-dimensional flow and
diffusion, and the effect of pinning sites on the diffusion.

(Some figures may appear in colour only in the online journal)

1. Introduction

The physics of surfaces and adsorbed monolayers has
attracted a lot of interest in the context of soft matter

research and its promising, versatile technical applicability.
In theoretical studies two-dimensional systems are often used
as models, the interactions with substrates being conveniently
modeled by external fields. The experimental counterpart,
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two-dimensional systems of colloidal suspensions, has
been studied extensively in recent decades. A close
interplay between experiments, analytic theory and computer
simulations helped to shed light on such fundamental
questions of statistical physics as the nature of melting in
two dimensions with and without the influence of external
fields. In this context the elastic properties of two-dimensional
colloidal crystals have been analyzed by us recently [1, 2], as
well as the effect of external fields on structures and phase
transitions [3–7].

This work contains parts reviewing previous work by
the authors as well as new, unpublished results. Among the
latter are detailed studies of the phase boundaries of the
de-mixing regime in binary systems in external light fields,
configurations for shear induced effects at structured walls,
studies on the effect of confinement on certain structures
and defect densities in three-dimensional systems, the effect
of confinement and barriers on two-dimensional flow and
diffusion, and the effect of pinning sites on the diffusion.

In this work we focus on low-dimensional colloidal
model systems, via simulation studies and also some
complementary experiments, in order to elucidate the
interplay between phase behavior, geometric structures and
transport properties. In particular, we try to investigate the
(nonlinear!) response of these very soft colloidal systems
to various perturbations: uniform and uniaxial pressure,
laser fields, shear due to moving boundaries and randomly
quenched disorder.

The majority of our studies has been carried out
in two-dimensional systems. The search for methods to
induce certain structures in colloidal systems has fostered
the investigation of the effects of external light fields and
of structured (one-dimensional) walls on the structure of
model colloids. In this context sections 2 and 3 show new
contributions. Section 2 concentrates on the interesting effect
of laser induced de-mixing [3]. Here a detailed study of the
boundaries of the de-mixing regime within the phase diagram
is presented. Section 3 focuses on shear induced structural
deformations near walls. The effect of the confinement on
the dynamics of such systems is studied in greater detail in
section 3 as well as in section 4, where particles are exposed
to external fields in addition to the wall confinement. The
first particle layers close to the walls are of particular interest
in section 4, where interesting layering effects have been
found for certain well chosen wall distances, resulting in a
small number of layers. In section 3 complementary studies
have been carried out with the focus on larger layer numbers
and the effect of shear on the ordering in the first layers
close to the confining walls. In sections 4 and 5 finally the
diffusion of particles has been analyzed in greater detail. In
section 5 pinning sites result in a subdiffusive behavior, and
in section 4 the formation of layers hinders the free diffusion
of the particles resulting in a subdiffusive behavior as well.
In both systems, this behavior is only found at intermediate
timescales.

The paper is organized as follows. In section 2 we
present the results of Monte Carlo studies on laser induced
de-mixing as observed in binary hard-disk mixtures. In

section 3 we show Monte Carlo simulation results of the
effect of one-dimensional confining corrugated walls on
phase transitions of two-dimensional colloidal crystals and
on their behavior under shear. Section 4 presents our results
of Brownian dynamics simulation studies of the transport of
colloidal systems in two- and three-dimensional channels, and
in section 5 experimental results of the pinning effect on the
dynamics of a two-dimensional colloidal liquid are presented.

2. Binary two-dimensional model colloids in
external fields

Monodisperse 2D colloidal systems in interaction with
a substrate potential have been studied extensively in
experiments [8, 9], computer simulations [10, 6, 11, 5]
and theory [12–14] over recent decades. Reentrant phase
transition scenarios like laser induced freezing (LIF) and
laser induced melting (LIM) have been observed. In recent
studies [3, 4] we addressed the question of how the addition
of another length scale into such a system influences
the intricate competition between adsorbate–adsorbate and
adsorbate–substrate interaction by studying a binary 50%
mixture under the influence of a 1D spatially periodic
substrate potential. The colloids are modeled by hard disks
with a diameter ratio σB/σA = 0.414. The diameter of the
larger component of the mixture is set to σA = 1 in all
simulations. All lengths are measured in units of σA. The
packing fraction of the mixture is defined as η = ρ∗π(NAσ

2
A+

NBσ
2
B)/4N, where ρ∗ = ρσ 2

A is the dimensionless number
density. Following the approaches in the monodisperse
studies, we use the following external potential: V(Er) =
V0 sin( EK ·Er) with EK = (4π/a, 0) and a the lattice parameter of
the S1(AB) lattice. The wavelength λ= 2π/| EK| of the external
potential is commensurate with the periodicity of the S1(AB)
lattice.

These studies were carried out by Monte Carlo
simulations in the NVT ensemble. In order to facilitate
equilibration additional nonlocal moves are attempted with
particle displacements, which are integer multiples of the
potential wavelength. The simulation box is set up to be
slightly rectangular with Lx/Ly ≈ 1.178 and N = 1848 for
these simulations. This choice allows not only a box-spanning
square lattice to form, but also a box-spanning monodisperse
triangular lattice of the larger component to develop. Periodic
boundary conditions are employed in all simulations.

For the interaction of the mixture with the external
field three cases can be distinguished: (I) only the smaller
component interacts with the external field, (II) both
components interact with the external field, (III) only the
larger component interacts with the external field.

For low amplitudes, V∗0 = V0/kBT , we found a novel
phenomenon: in contrast to the monodisperse LIF scenario
a laser induced de-mixing [4] sets in for all three cases.
Laser induced de-mixing results in the coexistence of a small
component enriched fluid with a droplet of a monodisperse
crystalline structure formed by the larger component. The
ordering mechanisms at work and the resulting monodisperse
lattice structures differ for the three cases [3]. The ordering
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Figure 1. The laser induced de-mixing regime of the phase diagram
for an equimolar binary mixture with diameter ratio σB/σA = 0.414
exposed to an external periodic potential, commensurate with the
S1(AB) square lattice for the case where only the smaller
component of the mixture interacts with the external potential.

mechanisms stem from the attempt of the system to
minimize its energy via an alignment of the components
interacting with the external potential with the potential
minima and the constraint of a fixed overall number density.
While the coupling of only the smaller component to the
external potential (case (I)) results in the coexistence of a
monodisperse triangular lattice, cases (II) and (III), where the
larger component interacts directly with the external potential,
show a condensation of a monodisperse rhombic lattice.

There is no bulk de-mixing in the absence of a laser
field due to the disparity in particle size in the mixture under
study. The system exhibits two different coexistence regimes.
One is the regime discussed in this paper, at weak external
fields. Here one of the coexisting phases is a monodisperse
ordered phase. This is in contrast to the second coexistence
regime, which results at higher external field amplitudes.
There the 50% mixture in its fluid phase coexists with a
square lattice (S1(AB)), thus in this case no de-mixing occurs.
The coexistence regime at weak external fields is called
a de-mixing regime in order to emphasize this additional
property of the coexistence regime at weak external fields.
Its significance lies in the fact that an ordering in the larger
component can be induced by coupling the smaller component
to an external field.

Laser induced de-mixing offers an externally controllable
way to manipulate the miscibility of the components of the
mixture. In particular, for the scenario where only the smaller
component interacts with the external potential, the regime of
the phase diagram where de-mixing occurs can be obtained
by analyzing the probability distribution of the shape factor
ζ of the Voronoi cells. The shape factor is defined as the
ratio of circumference to area of the cell and is a measure
for the detection and characterization of structural changes in
hard-disk fluids [15].

Here, in figure 1 we present the phase diagram for the
laser induced de-mixing regime for this scenario. Above and
below the horizontal blue line no laser induced de-mixing was
observed. The figure depicts the phase boundaries between

Figure 2. Sketch of the system geometry, showing the fixed wall
particles (black spheres) and the mobile particles (gray spheres).
The orientation of the coordinate axes is indicated, as well as the
lattice spacing a of the triangular lattice and the linear dimensions
Lx and D of the system. When D = nya

√
3/2 there is no misfit, ny

rows of mobile particles (containing nx particles each, Lx = nxa)
occur at the approximately ideal distances relative to each other,
while the choice D = (ny −1)a

√
3/2 (with the misfit 1) implies

uniaxial compression of the lattice. Typically we work with ny = 30
rows and nx = 108 (i.e., N = 3240 mobile particles). Note that
shear can be introduced in the system by moving the lower wall
with velocity vshear in the +x-direction and the upper wall with the
same velocity in the −x-direction.

the modulated liquid and the de-mixing regime as well as the
boundary to a regime where square lattice structures and the
de-mixed monodisperse structures compete.

3. Two-dimensional colloidal crystals confined by
one-dimensional corrugated ‘walls’: phase
transitions and behavior under shear

In this section we discuss simulation studies of a system
of spherical colloids (which we model by point particles)
interacting with each other via a short-ranged isotropic
repulsive potential in a two-dimensional geometry and
confined by corrugated repulsive walls (figure 2). Following
our previous work [16–20], we define these walls in
terms of two rows of particles fixed at the positions of a
(perfectly ideal) rigid triangular lattice, which has a spacing
commensurate with the lattice structure of the mobile particles
(at the chosen density), see figure 2.

For our Monte Carlo simulations, we choose a generic
model which is computationally efficient: a potential V(r) ∝
r−12, but cut off at a finite range rc (and shifted and
smoothed, to avoid problems resulting from discontinuous
forces). Specifically, we use

V(r) =

[
ε
(σ

r

)12
− ε

(
σ

rc

)12
]
·

[
(r − rc)

4

h4 + (r − rc)4

]
(1)

with parameters rc = 2.5σ , h = 0.01σ and the particle
diameter σ = 1 defining the length scale in our model.
Similarly, ε = 1 defines the energy scale. At a density
ρ = N/V = 1.05 the melting transition then occurs at a
temperature T = Tm = 1.35 [21] (note that kB = 1). We
are mostly interested in temperatures T = 1.0 or lower here,
i.e. deep in the crystalline phase.

3



J. Phys.: Condens. Matter 24 (2012) 464119 D Wilms et al

Figure 3. Stress anisotropy σ = σyy − σxx plotted versus misfit 1,
for a system of N = 3240 mobile particles, and using different
starting configurations, containing ny = 30, ny = 29 or ny = 28
rows. The vertical broken straight lines denote the positions of the
equilibrium transitions, located by free energy methods. Note that
the phase switch simulations showed that from the three candidate
structures numbers 1–3 with 28 rows structures numbers 1 and 3 are
only metastable, while number 2 is the stable structure. All data are
for T = 1.0. Reproduced with permission from [22]. Copyright
2012 American Physical Society.

Already in our previous work it was shown that
uniaxial compression of the system by reducing the available
(two-dimensional) ‘volume’ via a reduction of the distance D
between the confining walls can introduce structural phase
transitions in the system [18–20]. Increasing the misfit 1
(defined via D(1) = (ny − 1)a

√
3/2, D(0) = D0, a being

the lattice constant of the undistorted triangular lattice at
the chosen density ρ = N/(D0Lx) = 1.05) one finds that the
stress anisotropy σ = σyy − σxx increases until at some value
a jump discontinuity occurs, where σ suddenly decreases,
accompanied by a transition where the number of rows
changes (ny → (ny − 1)) while the total particle number N
in the system stays fixed.

This reduction in the number of layers means that the
nx particles of the row that is removed are distributed in
the remaining rows, leading to a smaller lattice spacing
also in the x-direction. However, this smaller lattice spacing
is incommensurate with the original lattice spacing a in
the rows of fixed particles representing the walls; this lack
of commensurability leads to the formation of a ‘soliton
staircase’ along the boundaries, and a nonuniform strain
distribution throughout the system [18–20].

However, when one follows this transition in the opposite
direction ((ny − 1)→ ny), one encounters a huge hysteresis
(figure 3). Such a non-equilibrium behavior is not uncommon
for discontinuous (first order) phase transitions, of course.
Note that the situation gets worse when one compresses the
system further, to observe the transition (ny − 1)→ (ny − 2)
(figure 3). Several ‘candidate structures’ for the phase with
ny − 2 rows were found, but a priori it is unclear which is
stable and which are only metastable.

To clarify the relative stability of such structures which
are imperfectly crystallized and to locate the positions of the
transitions in thermal equilibrium, a first principle method

Figure 4. Free energy differences between the structures with
(ny − 1) = 29 and ny = 30 rows shown as functions of the misfit 1.
The points with the large error bars are from the Schmid–Schilling
thermodynamic integration method and the points falling on the
straight line are from phase switch Monte Carlo simulations.
Reproduced with permission from [22]. Copyright 2012 American
Physical Society.

is to obtain the free energy difference between the various
structures. There are several ways how this can be achieved.
One approach that we have applied is to use the method of
Schmid and Schilling [21] which separately estimates the
absolute free energy of each structure in question. However,
the obvious disadvantage of this method is that, for the
transition from ny = 30 to ny = 29, for a misfit in the range
1.4 ≤ 1 ≤ 2.0, the total free energies FI, FII of both phases
vary from about 22 000 to about 24 000, but their difference
1F varies only from about −60 to +60 in that range. Thus
reaching the necessary accuracy requires an enormous effort.
We have found it much more efficient (see [22] for a more
detailed explanation of technical aspects of this work) to
employ the ‘phase switch Monte Carlo method’ [23, 24].
In this method, one directly carries out moves from states
belonging to one phase to states belonging to the other phase,
sampling the relative weights of both phases in the course of
the simulation. Figure 4 shows, as an example, a plot of 1F
versus 1 for the ny → (ny − 1) transition [22].

Having clarified which structures are stable and which
are only metastable, it is of interest to explore the response
of the system when the walls are sheared against each other
(figure 5). One sees that the shear deformation ‘melts’ the
crystal near the walls, where the velocity is nonzero, so that
the particles flow with the wall. Note that unlike figures 3
and 4 these data are not obtained from Monte Carlo methods,
of course, but rather using molecular dynamics methods
(applying a Langevin thermostat to avoid the system steadily
heating up; however, we do find at large velocities a nontrivial
temperature profile T(y) across the film [25]).

One should not attribute the shear melting of the crystal
near the walls to the increase in local temperature (which
is extracted from the velocity distribution of the particles);
however, as figure 5 demonstrates, the range over which the
velocity is distinctly nonzero in the system is largest for a wall
velocity of v = 0.5, for which the temperature enhancement
near the walls is still small. That is, about five rows at
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Figure 5. Velocity profile v(y) at temperature T = 0.3 and ny = 30, 1 = 0, i.e. a commensurate system with no misfit (a), and a system
with ny = 29 rows at misfit 1 = 2.2 (b). Various choices of the wall velocity vshear are included, as indicated.

Figure 6. Snapshot of a configuration for a system at temperature
T = 0.3, misfit 1 = 2.2, ny = 29 rows and vshear = 0.5.

each wall are taking in this case fluid like configurations,
as an examination of snapshot pictures reveals, see figure 6.
It should also be noted that in the interior of the system
the triangular crystal structure does not at all stay intact,
rather one finds large crystalline domains rotated by more
or less large angles relative to the undeformed case. These
domains are separated by grain boundaries. This structure is
not completely static, in fact, for row numbers n = 10 or
n = 20, which belong to this crystalline domain structure, one
finds small but distinctly nonzero velocities (for wall velocity
v = 0.5, for instance), thus, the system exhibits plastic flow.

When the wall velocity increases beyond about v = 1.5,
however, the extent of flow that is caused in the system is
much reduced: the wall particles already move too fast to be
able to create a coherent motion in the boundary region of the
crystalline strip. In fact, for v→∞ the situation corresponds
to an effectively flat wall potential, which does not lead to
any flow of the mobile particles. Also the local temperature
increases only in the rows immediately adjacent to the walls
(due to enhanced friction), while in the interior of the system
T(y) with increasing v reaches a maximum and then decreases
again.

Thus, shearing confined two-dimensional (and hence
very soft) crystals causes very rich and diverse behavior (for a
more detailed account of this work we refer to [25]).

4. Transport in colloidal model systems

4.1. System, equilibrium and the effect of external fields in
two-dimensional systems

Non-equilibrium stationary states have received much
attention recently in different areas of science ranging from

Figure 7. Three-dimensional microchannel with square cross
section.

the analysis of pedestrian dynamics [26], to biologically
relevant transport of ions in membranes [28], to lab-on-chip
devices and microfluidics [27]. The behavior of colloidal
systems [29] has been studied both in two-dimensional
(2D) [30–32] and in three-dimensional (3D) systems [33–35].
Experiments for non-equilibrium structure formation have
been carried out with oppositely charged colloids driven
in opposite directions by an electric field [36] or in
binary complex plasmas under microgravity conditions [37].
Such driven, diffusive systems serve as model systems for
theoretical studies of non-equilibrium behavior [38].

Here we present results for the structure and dynamics
of colloidal systems confined to two- and three-dimensional
channels in equilibrium and under the action of external
constant forces. Details of the model and methods have been
presented elsewhere [39]. The channel geometry is sketched
in figure 7. The time evolution of the system is obtained
by Brownian dynamics simulation, based on the overdamped
Langevin equation. Hydrodynamic interactions as well as
short time momentum relaxation of the particles are neglected.
The appropriate stochastic position Langevin equation for this
situation with friction constant ξ ,

ξ
dri(t)

dt
= −∇ri

∑
i6=j

Vij(rij)+ F(ext)
i + F̃i(t), (2)

is time-integrated with a finite time step 1t and the technique
of Ermak [40]. The right-hand side includes the particle
interaction as a sum over all forces acting on each particle,
the constant driving force F(ext)

i and the random forces F̃i
describing the random collisions of the solvent molecules
with the ith colloidal particle and modeled as a white noise
term, representing a heat bath with temperature T . The 2D
channels have a length of Lx = 800σ and a width of Ly =

10σ containing 3200 particles corresponding to a density of
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ρ = 0.4σ−2. The 3D channels typically have a quadratic
square section of Ly = Lz = 5σ and a length of Lx = 1000σ
containing about 10 000 particles with a fixed particle density
of ρ = 0.4σ−3. The particles are confined within the channels
by ideal hard walls. The equilibrium configuration in a closed
channel is calculated starting from a random configuration
and applying hard wall boundary conditions in all directions.
The systems are typically equilibrated over 2 × 105 time
steps. The time step 1t = 7.5 × 10−5tB is used, where tB =
ξσ 2/kBT is the time a particle needs in equilibrium to diffuse
its own diameter σ . The friction constant ξ is chosen to be
ξ = 3πησ = 4.288 × 10−8 N s m−1, where η = 0.001 Pa s
is the shear viscosity of water. The simulations are carried out
at a constant temperature T = 295 K. To study the influence
of an external force, a constant driving force of F(ext)

=

2.603 × 10−15 N is applied in the longitudinal direction. The
channel end is then realized by an open boundary condition.
To keep the number density in the channel fixed a new particle
is inserted within the first 10% of the channel at a random
position avoiding overlaps every time a particle leaves the
open end of the channel acting as a particle reservoir. This
procedure seems to be appropriate to permit comparison with
experimental studies [43, 44], in which the channel is coupled
to two reservoirs.

Due to a confinement, a classical 2D system forms
a layered structure in equilibrium [41, 16, 43, 44], and
the change in the number of layers due to the geometry
of the confinement has been predicted using Langevin
dynamic simulations [42]. The effect of the special boundary
conditions in the x-direction has been analyzed in great detail
for two-dimensional systems in [44]. A constant driving force
in the x-direction and periodic boundary conditions would
result in a layer formation for certain channel widths, similar
to the equilibrium situation. The insertion of particles, which
leave the channel end, at a randomly chosen place in the 10%
region at the beginning of the channel results in a density
gradient across the channel. At places along the channel,
where the density has decreased sufficiently to energetically
stabilize configurations with one layer less, the number of
layers changes by−1. This scenario is essentially the same for
three-dimensional systems, except that the number of planes
parallel to the 3D-channel walls gets reduced instead of the
number of layers. In the case where the external forces are not
acting on the particles in the ‘reservoir regions’ of the channel
(the first and last 10% of the channel), interestingly a density
increase results in the flow direction [44].

Even more interesting is the behavior of the system at
barriers perpendicular to the channel and flow direction. A
transparent, micron-sized colloidal particle, whose index of
refraction is greater than that of the surrounding medium, can
be trapped by a tightly focused laser beam. Extremely high
gradients in the electric field occurring near the waist of the
laser beam are associated with strong forces which drag the
particle to the focal point of the laser beam. The strength of
the optical force acting to restore the particle position to the
trap center can be considered, in good approximation, to be
harmonic. Therefore the force may be expressed by Fopt(r) =
−kr for r ≤ Rtrap and Fopt(r) = 0 for r > Rtrap, where k

Figure 8. Full channel snapshot of a channel with a barrier of
repulsive optical traps marked by the red line. The simulation
parameters used are Lx = 800σ , Ly = 10σ , n = 0.3σ−2,
B = 0.5 mT, a driving force corresponding to a channel inclination
angle of α = 0.2◦, and the trap parameters k̃ = −1, Rtrap = 0.75σ .

denotes the trap stiffness perpendicular to the direction of
the laser beam and Rtrap is the interaction range of the trap.
To study possible influences on the flow behavior simulations
have been performed, where we additionally inserted the trap
force Fopt into the overdamped Langevin equations which
are evaluated numerically. These simulations model optical
traps of different interaction ranges, in various geometrical
arrangements ranging from fixed user-defined positions to
fixed random positions, and barriers made out of traps
transverse to the direction in which the particles are driven.

Figure 8 shows the stationary non-equilibrium situation
of a barrier perpendicular to the particle driving direction
being obtained from a BD simulation run. The particles are
hindered from crossing the barrier. Thus, an increasing density
gradient forms in front of the barrier leading to an increase
of layers. At the barrier the local density shows a sharp
non-continuous drop resulting in fewer layers. Further studies
on the effect of barriers on the structure and dynamics of
colloidal systems will be presented in [46] (same journal
issue).

Following our studies in [43, 44, 39], we investigate the
structural behavior of particles interacting via a hard-core
Yukawa (YHC) potential in 2D and 3D microchannels by
Brownian dynamics simulations. As a result of the layering
effects due to the confinement by the channel walls, for
different cross sections the particles can arrange into planes,
parallel to the channel walls, for certain values of Ly = Lz, see
figure 9, or remain in a disordered configuration. Figure 10(a)
shows the equilibrium configuration in a 3D channel with
a quadratic square section of width Ly = 5σ and a length
of 1000σ . In equilibrium a loose structure with four planes
forms which is stretched perpendicular to the confinement, see
figure 10(b). The local lattice structure has been analyzed by
local bond orientational order parameters [45]. In figure 9 we
note that for Ly = Lz = 8.1σ , the number of planes is seven,
systematically complementing findings of a previous study for
other system sizes [39]. Due to the mismatch between the
multiples of the lattice parameters and the channel width, the
probability for lattice defects is minimal for ordered structures
(5% for Ly = 5σ (four planes), 14.2% for Ly = 6.3σ (five
planes) and 15% for Ly = 8.1σ (seven planes)), compared to
values for less ordered structures at slightly different channel
widths (17% for Ly = 4.5σ , 28.1% for Ly = 5.5σ ), and
the probability for a local fcc structure is roughly twice as
large as that for local hcp structures. These results for the
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Figure 9. Crystal structures in microchannels (projected on the yz plane) of different widths: (a) Ly = 4.5σ , (b) Ly = 5.0σ , (c) Ly = 5.5σ ,
(d) Ly = 5.7σ , (e) Ly = 6.3σ , (f) Ly = 6.9σ , (g) Ly = 8.1σ , (h) Ly = 9.3σ . Particles with fcc-symmetry are blue, with hcp-symmetry red,
defects are gray and boundary particles black.

defect probabilities complement our results in [44], in which
the effect of the coupling constant on the defect densities
was analyzed in two-dimensional systems interacting with a
dipolar interaction. In the latter studies it was found that the
defect densities increase with decreasing interaction strength,
approaching fluid structures for small values, and that the
presence of defects is closely related to the regions of layer
reductions, whereas here we obtain greater and more detailed

insight into the effect of the channel width on the defect
probabilities.

4.2. Transport behavior of colloids in 3D microchannels

Now we address the transport behavior of colloids confined in
3D microchannels. The colloids are driven by the application
of an external driving force. A reduction of the number of

7
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Figure 10. (a) Configurations in equilibrium. On the right side all particle coordinates are projected on the yz plane, on the left side
projections on the xz plane are shown. The distances in the z-direction are stretched by a factor of 16. (b) Local density and lattice constants
ax, ay and az in the channel in equilibrium.

Figure 11. (a) Configurations in a non-equilibrium stationary state after 106 time steps. On the right side all particle coordinates are
projected on the yz plane, on the left side projections on the xz plane are shown. The distances in the z-direction are stretched by a factor of
16. (b) Plane order parameter for numbers of planes nP = 3, nP = 4 and nP = 5 perpendicular to the z-direction. (c) Layer order parameter
for the number of lanes nl = 4 for four planes in the xy-direction.

planes in the direction of the force can be seen in figure 11(a).
This phenomenon is analogous to the layer reduction observed
in the previous studies in 2D and 3D microchannels [43, 44,
39]. After 106 time steps the system reaches a stationary
non-equilibrium, in which the position at which a reduction
of the number of planes occurs, see figure 11(a), is stable over
long simulation times (quasi-stationary), and the particles
move across this position. In the stationary non-equilibrium
a density gradient forms along the complete length of the
channel causing the change of the number of planes and
therefore leading to a change of the lattice constants. While
the density reduction is smooth and quasi-continuous within
statistical scatter throughout the entire channel, the local
lattice constants show a non-continuous behavior at the

plane reduction regions. At the left end of the channel
the lattice constant ax is larger then ay and az and the
lattice is compressed perpendicular to the confinement. At
the end of the transition area ax is smaller than ay and az.
While the latter two remain constant until the next transition
point, ax increases monotonically. This behavior suggests that
stretching of the lattice in the flow direction leads to an
instability causing the reduction of the number of planes. The
change in the number of planes is clearly visible from the
plane order parameter [39], shown in figure 11(b), and defined
as

9plane(np) =

∣∣∣∣∣ 1
nbin

nbin∑
j=1

exp(i(2π(np − 1)/Lp)pj)

∣∣∣∣∣ , (3)

8
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Figure 12. Snapshots of different channel configurations with maximal order (left) and minimal order (right). The diffusion in ordered
systems is suppressed whereas the diffusion in disordered systems is enhanced [47].

Figure 13. (a) The layer order parameters 9layer,nl as a function of channel width for nl = 2,3,4 and 5 layers. (b), (c) The mean square
displacements as a function of time in a log–log plot for different channel widths [47].

with pj ∈ {xj, yj} and Lp ∈ {Ly,Lz}. Here, the channel with
cross section Ly × Lz is subdivided in the x-direction
into regions containing nbin particles, and 9plane(np) = 1
for configurations with np equidistant planes in the y- or
z-direction. In figure 11(c) we analyze the structural changes
in greater detail by the layer order parameter [43, 44, 39],
defined as

9layer(nl) =

∣∣∣∣∣ 1
nbin

nbin∑
j=1

exp(i(2π(nl − 1)/Ly)yj)

∣∣∣∣∣ . (4)

Here, the (2D) channel of width Ly at fixed z is subdivided
in the x-direction into regions containing nbin particles, and
9layer(nl) = 1 for configurations with nl equidistant layers in
the y-direction.

We note that in the part of the channel where four planes
are stabilized, the number of layers in two-dimensional slices
parallel to the xy plane is four at z-positions in the channel,
where the planes are located (at the walls, z = 0 and z = 5σ ,
and at z = 1.66σ and z = 3.33σ ), proving good 2D as well as
3D ordering for this channel cross section (Ly = Lz = 5σ ).

4.3. Diffusion of model colloids in 2D microchannels

The effects of confined geometry and of pinning sites on the
diffusion of particles have been studied here and in section 5
(experiment). In both situations, a subdiffusive behavior has

been found for certain time regions. Here, we have studied
the effect of the layering in a two-dimensional colloidal
system on the diffusion behavior. At a constant dimensionless
interaction strength and constant density, layered systems and
more disordered systems alternate with increasing channel
width LY , as figure 12 shows. This type of layering order can
also be characterized by a layer order parameter 9layer,nl [43,
44, 39], which is near 1 if the particles are structured in nl
equidistant layers and otherwise much smaller (figure 13(a)).
This layering has an important influence on the diffusion,
which can be characterized by the mean square displacement
(MSD), 〈

1Er 2(t)
〉
=

1
N

N∑
i=1

|Eri(t)− Eri(0)|
2 , (5)

where the sum runs over all particles N. For diffusion in
the x-direction only the x coordinates are considered in
〈(1x(t))2〉.

Starting from the well known case of single file
diffusion [48] at channel width LY = 1 (figure 13(b)) with a
long time evolution of the MSD, 〈(1x(t))2〉 ∝ t0.5, we studied
the dependence of the MSD on the width of the channels. The
MSD for wider channels has a non-monotonic dependence
on the width LY . This non-monotonic behavior is induced by
the layering. Figure 13(c) shows the MSD for the channels
with maximal order (LY = 2.3; 3.8; 5.5) and with minimal

9
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Figure 14. (a) Snapshot of the colloidal ensemble at the first time step. (b) Distribution of the maximum spatial amplitude of the single
particle positions during 5000 s. Particles are defined as pinned if their amplitude is below 9 µm. (c) Trajectories after 5000 s in a
sub-window of the ensemble. The pinned particles are highlighted with circles. (d) The same sub-window as in (c), division of the ensemble
into subsystems: pinned sites (black), their nearest (green) and next nearest neighbors (orange), and the rest of the particles (gray).

order (LY = 3.2; 4.6; 6.1). The diffusion has a maximum
for disordered channels and a minimum for channels with
layering. In all cases a subdiffusive exponent is found in
certain intermediate time regions and at late times the standard
diffusion exponent is found. This work is still in progress [47].

5. Dynamics of a two-dimensional colloidal liquid
with pinning

A special way to confine particles is a set of pinning
sites distributed randomly within a two-dimensional plane.
This (2D − ε)-dimensional system is less artificial than
it may appear. The thermodynamics of two-dimensional
crystallization in random potentials is of particular interest
since Nelson discovered the possibility of a melting transition
due to quenched random impurities [49]. Chudnovsky and
Serota generalized this scenario to substrates with random
force fields [50, 51] and Cha and Fertig found a disorder
induced melting at zero temperature [52]. In this context, we
want to study the effect of confinement due to random pinning
on the dynamics of a two-dimensional colloidal system.

Our ensemble consists of epoxy coated, superparam-
agnetic polystyrene beads with a size of 4.5 µm. Diluted
in water and confined in a cylindrical glass cell with a
radius of 5 mm and a height of 1.5 mm, the particles
sediment down to the bottom glass plate due to their higher
mass density. We obtain one monolayer consisting of ∼105

particles of which approximately 1% are pinned to the glass
substrate. The pinning occurs due to a linking of epoxy
polymers to the glass surface. The system is fixed at room

temperature and inclined by precise micrometer motors to
ensure a perfect horizontal alignment of the layer. The beads
are doped with nanometer-sized Fe2O3/Fe3O4 domains which
cause superparamagnetic behavior with a high magnetic
susceptibility χ per bead. An external magnetic field H
perpendicular to the monolayer aligns the dipoles with particle
density n and allows us to tune the interaction strength
between the beads, indicated by the dimensionless parameter

0 =
(πn)3/2 χ2H2

4πkBT
. (6)

0 is the ratio of magnetic to thermal energy which is a
measure of the inverse system temperature 1/T . A window
of 1 mm2 consisting of a few thousand beads is monitored
permanently by video microscopy and the particles are
tracked for a few hours in steps of a few seconds. This allows
us to generate precise static and dynamic correlation functions
in the long time limit.

We prepared the colloidal system at an interaction
strength of 0 ≈ 37.0. At this value, the system is in the
isotropic liquid phase [53]. Figure 14(a) shows a snapshot of
our ensemble which consists of approximately 5800 particles.
Figure 14(b) shows the distribution of the maximum spatial
amplitude of the particles in the x- and y-directions. The
amplitude is calculated by the magnitude of the difference
between the minimum and maximum particle positions during
5000 s. One can see that most particles cover the region with
amplitudes between 15 and 35 µm, separated from particles
with smaller amplitudes. We define particles as pinned if their
maximum spatial amplitude is less than 9 µm in the x- and in

10



J. Phys.: Condens. Matter 24 (2012) 464119 D Wilms et al

y-directions. This threshold is also geometrically reasonable
because it is twice the particle diameter and exactly the
displacement a particle needs to get out of the way of another
one. Figure 14(c) shows a trajectory plot of a sub-window
of the colloidal system for 5000 s. The pinned particles are
highlighted with circles and one can see that these particles
are clearly restricted in their movement.

We are now interested in the effect of the pinned particles
on the dynamics of the rest of the ensemble. This effect
should be more crucial for particles near the pinned ones
than for the bulk. Therefore we subdivide the system into
nearest neighbors and next nearest neighbors of the pinned
particles, and the rest of the system. This classification can be
seen in figure 14(d), where the pinned particles are colored
black, nearest neighbors green, next nearest neighbors orange
and the rest of the ensemble gray. To study the dynamics
of the different subsystems, we look at the characteristics of
the mean square displacement, see equation (5). The result
is shown in figure 15 for the different subsystems, where the
square root of the mean square displacement (sqrt-MSD) is
plotted. One can see that there is a significant difference in
the dynamics for the nearest neighbors observable, compared
to freely moving particles in the bulk. This is caused by
their partial confinement due to the pinned particles. Here,
the nearest neighbors are those determined in the first time
step since in MSD positions are compared to the initial ones.
There is even a slight drop in the sqrt-MSD for the next
nearest neighbors in the second shell, which indicates that
the restricted dynamics due to the confinement is transferred
over ‘free’ particles. For the pinned particles the sqrt-MSD
is bounded at long times. It is interesting to note that
the timescale where deviations between first shell and bulk
particles are visible (∼250 s) is comparable to a few Brownian
timescales. After about 3000 s the particles have moved more
than a typical particle distance and are typically not nearest
neighbors to the initial ones. This marks the range where
motion is diffusive again for all but the pinned particles.

The dynamics of the nearest neighbors is clearly
constricted and this effect is even seen for the next nearest
neighbors. Approaching a more ordered phase, this might
have a crucial effect on transition temperatures, the character
and the microscopic mechanism of the phase transition. Not
only might fluctuations on all length scales be suppressed
which are essential for the KTHNY melting scenario [54–56],
but a system with random pinning might also show
similar thermodynamics to systems with short or long scale
disordered substrates [57] or in confined geometries [16].

6. Concluding remarks

This work contains parts reviewing previous work by the
authors as well as new, unpublished results. Among the
latter are detailed studies of the phase boundaries of the
de-mixing regime in binary systems in external light fields,
configurations for shear induced effects at structured walls,
studies on the effect of confinement on certain structures
and defect densities in three-dimensional systems, the effect

Figure 15. Sqrt-MSD for the different subsystems. The nearest
neighbors of the pinned particles show a significant difference in
their dynamics with respect to the rest of the ensemble, which is
even seen for the next nearest neighbors. The inset shows the MSD
in log–log scale. After about 3000 s the motion is diffusive again as
indicated by the two lines with slope unity.

of confinement and barriers on two-dimensional flow and
diffusion, and the effect of pinning sites on the diffusion.

The majority of our studies were carried out in
two-dimensional systems. Sections 2 and 3 show new details
on the effects of external light and shear fields on the structural
properties of colloidal systems: the phase boundaries of an
interesting light induced de-mixing effect as well as shear
induced structural deformations near walls. The effect of the
confinement on the dynamics of such systems was studied
in greater detail in section 3 as well as in section 4, where
particles were exposed to external fields in addition to the
wall confinement. The first particle layers close to the walls
are of particular interest in section 4, where interesting
layering effects were found for certain well chosen wall
distances, resulting in a small number of layers. In section 3
complementary studies were carried out with the focus on
larger layer numbers and the effect of shear on the ordering in
the first layers close to the confining walls. Section 4 compares
the effects known for two-dimensional systems with those of
three-dimensional systems and presents more insight into the
latter. In sections 4 and 5 finally the diffusion of particles was
analyzed in greater detail. In section 5, the effect of pinning
sites was studied by experimental methods, and an interesting
subdiffusive behavior was found. In section 4 the formation of
layers hinders the free diffusion of the particles resulting in a
subdiffusive behavior as well. In both systems, this behavior
is only found at intermediate timescales.

In this paper, we have presented model calculations
on colloidal systems in strictly two-dimensional geometry,
considering also the effect of confinement to quasi-one-
dimensional slit pores or channels, and dealt also with
transport in quasi-one-dimensional channels having a square
cross section. One of the perturbations of the ordering that
we considered was the uniaxial compression of colloidal
crystals (that in the ideal case form a perfect triangular lattice
structure) by corrugated walls, that (in the case without misfit)
are commensurate with the crystal structure. We have studied

11



J. Phys.: Condens. Matter 24 (2012) 464119 D Wilms et al

the phase transitions that occur in the number of layers that
take place with increasing misfit (n layers → n − 1 layers
→ n − 2 layers). We studied the increasing disorder that this
compression (together with the resulting incommensurability
at the walls) causes. Since these transitions display huge
hysteresis, and also in some cases several different structures
occur with comparable degree of disorder, it has not been
clear which of these structures is the stable one, and which
are only metastable. To answer such questions, we found
it useful to develop methods from which the free energy
differences between different (partially ordered) structures
can be inferred. Comparing results obtained from either the
Schmid–Schilling method or the ‘phase switch Monte Carlo’
method of Wilding, we found that both methods give mutually
compatible results, but the phase switch Monte Carlo method
gives much more accurate results even with less numerical
effort. We believe that this method should also be useful for
other cases where in colloidal systems several (partially or
perfectly) ordered phases compete with each other. Another
interesting perturbation occurs if the two confining walls are
not used to compress the system in the direction perpendicular
to the walls, but rather to create a shear deformation, moving
both walls along the strip, but in antiparallel directions. This
causes a kind of ‘melting’ of a few layers of the crystal
along the wall. The behavior of such a deformed crystal is
reminiscent of ‘shear banding’, familiar from other soft matter
systems under flow; however, the investigation of the details
of this interesting behavior must be left to future work.

A successful route to the controlled structuring of binary
mixtures is exposure of the system to a modulated external
field. Weak external fields allow a controlled tuning of the
miscibility of the mixture. The ordering mechanisms resulting
in a laser induced de-mixing (LID) in this regime depend on
the details of the coupling of the components of the mixture
to the modulating field [3, 4]. Here we presented the phase
diagram of the laser induced de-mixing regime for the case
where only the smaller component of the mixture interacts
with the external potential.

In addition, a structural analysis has been performed
in a colloidal model system with dipolar or YHC particle
interactions in 2D and 3D microchannels. We have reported
on a variety of ordering and transport phenomena induced
by the confinement of the motion of the particles by parallel
walls and by the application of a constant driving force
along the channel. The structural properties show oscillations
upon increasing the width of the channel with a period of
the effective boundary plane distance. Due to the mismatch
between the multiples of the lattice parameters and the
channel width, the probability for lattice defects is minimal
for ordered structures compared to the values for less ordered
structures, and the probability for a local fcc structure is
roughly twice as large as for local hcp structures. The number
of planes can be reduced by applying an external driving
force. In the stationary non-equilibrium the particles flow over
the reduction zone which stays at a constant position. For
small driving forces, where the particles are not in the regime
of plug flow, the particles arrange themselves into a different
number of planes, and in these planes parallel to the channel

walls a good layer ordering is found in addition, showing good
ordering in 3D as well as in 2D. The effect of the layering in
2D systems on the diffusion behavior is briefly discussed.

In an experimental system we have shown that point like
defects can affect the mobility of particles locally. The mean
squared displacement of particles which are nearest neighbors
of particles which are immobile due to pinning to the substrate
is significantly reduced in a 2D fluid. The effect is even visible
in the second shell of pinned particles. This locally reduced
mobility caused by pinning centers may affect the nature of
phase transition in 2D experimental systems where critical
fluctuations play an important role.
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